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We isolated the most lethal toxins in the venom of the Malayan krait (Bungarus can-
didus), one of the medically most important snake species in southeast Asia. Three �-
BTx like basic neurotoxins, T1-1, T1-2, and T2, with PLA2 activity were isolated from
pooled venom of eight B. candidus from southern Thailand by cation-exchange chro-
matography, followed by adsorption chromatography on hydroxylapatite and RP-
HPLC, with 14-, 16-, and 4-fold increases in toxicity compared to crude venom. The
LDs50 determined in mice weighing 18–20 g were 0.26, 0.22, and 0.84 �g per mouse with
i.v. injection. T1-1 and T1-2 possessed comparable lethal toxicities to those of �1-BTx,
the most toxic neurotoxin in B. multicinctus venom, and the major neurotoxin in B.
flaviceps venom. The apparent molecular weights of the native toxins were approxi-
mately 25–25.5 kDa. They consist of two polypeptide chains with apparent molecular
weights of 15.5–16.5 and 8–8.5 kDa, respectively. The amino terminal sequences of the
two chains of each of the toxins determined by Edman degradation exhibited consid-
erable similarity with those of the A-chains and B-chains of �-BTxs in the venom of
Bungarus multicinctus.
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Abbreviations; �-BTx, �-bungarotoxin; CBB, Coomassie Brilliant Blue; HLD, hemolytic dose; PLA2, phospholipase
A2; PTH, phenylthiohydantoin; PVD, polyvinylidene difluoride; RP-, reverse phase-; TFA, trifluoroacetic acid.

The venomous snake fauna of Thailand is legendary and
includes several of the world’s most dangerous species.
The medical importance of species like the monocellate
cobra (Naja kaouthia), the Malayan pitviper (Callose-
lasma rhodostoma), the Siamese Russell’s viper (Daboia
russellii siamensis), and several green pitvipers of the
genus Trimeresurus is widely recognized. Other danger-
ous snakes include numerous species of sea snakes, the
king cobra (Ophiophagus hannah), three species of kraits
(genus Bungarus), and the Asian coral snakes of the gen-
era Calliophis and Sinomicrurus (1–3). This second
group has traditionally been regarded as one of lesser
concern epidemiologically because the incidence of bites
by these species, particularly in densely populated metro-
politan areas, is low (4).

Among the kraits, the large and conspicuously colored
banded krait (Bungarus fasciatus) has been associated
with a low incidence and mortality of bites in Thailand
(5), and no published information exists in bites by the
red-headed krait (Bungarus flaviceps). However, the
third species, the Malayan krait (Bungarus candidus),
has in the course of the past 20 years emerged as one of
the medically most important venomous snakes in south-

were provided by Warrell et al. (6), who reported on five
patients from eastern Thailand and northwestern Malay-
sia. Loathong and Sitprija (7) presented the clinical
details of three additional B. candidus bite victims in
Thailand and suggested that envenoming by Malayan
kraits was clinically dominated by presynaptically acting
toxins. Through hospital-based surveys, Looareesuwan et
al. (8) and Viravan et al. (9) found that B. candidus, for
which no specific antivenom is available, is one of the
three most important species in Thailand with respect to
snake bite mortality, being responsible for as many fatal-
ities as the monocellate cobra and the Malayan pitviper,
and that the number of hospitalized bite cases for this
species was much higher than previously believed. More-
over, fatalities caused by B. candidus are probably still
underreported because most bites occur in rural areas,
and the time to death is short due to the extremely high
lethal toxicity and neurotoxic mode of action of its venom.
By way of comparison, B. candidus venom (LD50, 3.5 �g
per mouse) is much more toxic than the venom of its
larger congener B. fasciatus (LD50, 61.7 �g), more toxic
than N. kaouthia venom (LD50, 6.5 �g), and together with
the venom of B. flaviceps (LD50, 3.4 �g) must be consid-
ered the most toxic of all terrestrial snake venoms from
Thailand studied to date (10, 11).

The purpose of this study was to isolate and character-
ize the components of the venom of B. candidus that have
the highest toxicity and are thus likely to play a predom-
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inant role in human envenomation by this species. Previ-
ously, Tan et al. (12) identified two highly lethal toxin
fractions with PLA2 activity and two polypeptide toxins
in a commercial venom sample of B. candidus of
unknown geographical origin, and Tsai et al. (13) dis-
cussed the amino acid sequence of an acidic group 1B
PLA2 of unknown biological function deduced from
venom gland cDNA of a B. candidus from Bali, Indonesia.
Based on the results of studies on the venom of the Tai-
wanese many-banded krait, B. multicinctus (14, 15), and
the work by Tan et al. (12), the most lethal toxins of B.
candidus venom were expected to be presynaptically act-
ing toxins like the �-BTxs from B. multicinctus venom,
i.e., heterodimers with a PLA2 (A-chain) covalently linked
with a Kunitz type protease inhibitor (B-chain). To gain a
first impression of the similarity of such toxins from B.
candidus venom to those of B. multicinctus, we compared
their amino terminal sequences with the published
sequences of �-BTxs (16–22).

MATERIALS AND METHODS

Snake Venom, Chemicals, and Reagents—Bungarus
candidus venom was obtained by milking from eight
adult male B. candidus from southern Thailand kept at
the Queen Saovabha Memorial Institute, and was lyophi-
lized immediately. The following liquid chromatography
columns were used: for cation-exchange chromatography,
Resource™ S (6 ml, Pharmacia); and for RP-HPLC Cap-
cell-Pak C-18 type SG 300, 15 � 250 mm (Shiseido,
Tokyo). Hydroxylapatite, the kaleidoscopic prestained
molecular weight standards for SDS-PAGE, and the PVD
membranes were purchased from Bio-Rad Laboratories
(Richmond, CA, USA), and the 4–20% polyacrylamide
gradient gel for SDS-PAGE (MULTIGEL 4/20) from Dai-
ichi Pure Chemicals (Tokyo).

Chromatographic Procedures—Cation-exchange chro-
matography: Fifty milligrams of crude B. candidus
venom was dissolved in 2 ml of 50 mM phosphate buffer
(pH 6.25), applied to the Resource™ S column equili-
brated with the buffer, and then eluted with a linear gra-
dient of 0–0.3 M NaCl at the flow rate of 20 ml/h. Absorb-
ance was measured at 280 nm, and fractions of 2 ml were
collected.
Adsorption chromatography on hydroxylapatite: The major
toxic fractions obtained on cation-exchange chromatogra-
phy were pooled (fraction XI in the previous step), con-
centrated in a collodion bag in vacuo, and then dialyzed
against the phosphate buffer. In each of two runs, a half
volume of the dialyzed solution was applied to a hydroxy-
lapatite column (1 � 8 cm) equilibrated with the buffer.
The column was eluted with a linear gradient of 0.05–0.5
M phosphate buffer (pH 6.25). Fractions of 1.5 ml were
collected at the flow rate of 12 ml/h. The identical toxic
fractions obtained in the two runs were then pooled and
dialyzed against distilled water. The dialyzed samples
were concentrated by lyophilization.
RP-HPLC: The samples obtained on adsorption chroma-
tography were dissolved in water and then chromato-
graphed on the Capecll-Pak C-18 type SG 300 column
equilibrated with 10% acetonitrile in 0.1% TFA. Protein
was eluted with a linear gradient of 10 to 80% ace-
tonitrile in 0.1% TFA over 60 min at the flow rate of 1.0

ml/min. Fractions were collected based on absorbance
units (AU) at 220, 254, and 280 nm.

Analytical Procedures—SDS-PAGE was performed
according to Laemmli (23) using the MULTIGEL 4/20
containing 0.1% SDS. A constant current of 30 mA/cm gel
was applied. Gels were stained with 0.1% CBB R-250 in
25% methanol–10% acetic acid or by the silver staining
method of Oakley et al. (24).

Amino terminal sequencing was carried out on a PVD-
membrane as described by Iwamatsu (25), but without S-
carboxymethylation: the purified toxins were subjected
to SDS-PAGE in a 15% gel and then transferred to a
PVD-membrane using the semi-dry transfer method.
After staining with Ponceau S, the bands corresponding
to the A- and B-chains were cut out and subjected to
automated Edman degradation with a gas-phase amino
acid sequencer (Model 477A, Applied Biosystems) and an
on-line PTH-derivative analyzer, Model 120A.

Assays—For toxicity assays, venom fractions or puri-
fied toxins were dissolved in 1 ml of 0.1 M phosphate-
buffered saline (pH 7.2), and then the photometric
absorbance at 280 nm was recorded in a 1 cm cell. Protein
concentrations were determined on the assumption that
an absorbance value of 1.47 (that of crude venom of Thai
B. candidus) corresponds to 1 mg toxin in 1 ml of solvent.
Outbreeding mice of both sexes weighing 18–20 g were
injected intravenously with 0.2 ml of sample solutions.
Death and survival were recorded for 24 h, and venom
fractions killing with 7 �g (corresponding to 2LD50 of
crude venom) were regarded as toxic. After preliminary
experiments involving two mice per dose, dilution at two-
fold intervals, the LDs50 of the toxins were determined by
testing five doses of serially 1.4-fold diluted solutions in
four mice per dose. The LD50 and its confidence limits at
95% probability were calculated by the methods of Reed-
Muench (26) and Pizzi (27), respectively. Animal experi-
ments were performed under supervision of the ethics
committee of the institute. PLA2 activity was determined
by the indirect hemolytic method (28) on erythrocyte-aga-
rose gel plates according to Gutierrez et al. (29), with the
use of human erythrocytes instead of sheep ones. The
method provided a straight calibration curve for the log
dose-diameter relationship between 9 and 23 mm cross
diameter of the hemolytic zones produced by 0.03–5 �g of
crude venom. To each plate of 135 mm diameter, a series
of 3-fold diluted crude venom solutions (5 �l) was intro-
duced to obtain a calibration curve, and the parallel line
analysis recommended by WHO (30) was adopted to
determine the HLD, in micrograms, causing a hemolytic
zone of 10 mm in diameter.

RESULTS AND DISCUSSION

Isolation, Toxicity, and PLA2 Activity—On cation-ex-
change chromatography of the crude venom, 94 fractions
were obtained and pooled into 13 fractions (the chromato-
gram is not shown). Significant lethal toxicity was ob-
served for the last five pooled fractions (IX–XIII). Al-
though PLA2 activity was detectable in all fractions,
significant activity was confined to pooled fractions I–III
and X–XIII. Table 1 summarizes the distributions of pro-
tein, lethal toxicity and PLA2 activity. Among them, frac-
J. Biochem.
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tion XI contained 59% of the recovered lethal toxicity and
thus was chosen for further purification.

Adsorption chromatography of fraction XI on a hydrox-
ylapatite column resulted in an elution pattern compris-
ing six peaks (Fig. 1). Lethal toxicity was detected in the
incompletely separated second and third peaks, which
were combined and designated as T1, and the fourth
peak, designated as T2. RP-HPLC of T1 resulted in four
peaks (Fig. 2A). The first and second of these contained
lethal toxicity, and were designated as T1-1 and T1-2. In
contrast, T2 was eluted essentially as one peak (Fig. 2B).

Table 2 summarizes the purification of the three neu-
rotoxins from B. candidus venom. For T1-1, T1-2, and T2,
14-, 16- and 4-fold purification was achieved, respec-
tively. The lethal toxicity of these neurotoxins amounted
to 30.5% of that of crude venom. Although the purified
neurotoxins exhibit PLA2 activity, no correlation was
observed between the increase in lethal toxicity in the
course of purification and the detected enzymatic activ-

ity. We interpret these findings as indicative of another
PLA2 in an adjacent fraction on cation-exchange chroma-
tography, which exhibits high enzymatic activity but low
toxicity, and was consequently eliminated during the
purification process.

Table 3 compares the lethal toxicities of the three puri-
fied neurotoxins from Thai B. candidus venom with those
of several neurotoxins hitherto isolated from Bungarus
snake venoms. Comparison was made by means of LDs50,
defined as �g per gram of mouse. The lethal toxicities of
T1-1 and T1-2 are comparable to those of �1-BTx from B.
multicinctus venom (18) and the major neurotoxin from
B. flaviceps venom (31) recently isolated in our labora-
tory. They are slightly stronger than �2-BTx and toxic
fraction F6A of B. candidus venom of unknown geograph-
ical origin (12), and much stronger than �3-, �4-, and �5-

Table 1. Distributions of protein, lethal toxicity and PLA2 activity in the pooled fractions obtained on
Resource™ S column chromatography.

a, bFigures in parentheses are the recoveries (%) calculated to the total toxicity and PLA2 activity obtained in the
first step of purification, respectively.

Fraction (tube no.) Protein (mg) Lethal toxicity PLA2 activity
LD50 (�g) Total LDs50 HLD (�g) Total HLDs

I (3–8) 30.36 �7 – 0.054 562,200
II (9–14) 5.52 �7 – 0.045 122,700
III (15–22) 2.03 �7 – 0.16 12,690
IV (23–26) 0.82 �7 – 0.25 3,280
V (27–32) 0.71 4.9 145 0.25 2,840
VI (33–38) 0.86 �7 – 0.72 1,194
VII (39–46) 1.84 �7 – 0.84 2,190
VIII (47–51) 2.02 �7 – 0.90 2,244
IX (52–56) 1.81 1.8 1,006 0.67 2,700
X (57–61) 1.15 0.70 1,643 0.060 19,170
XI (62–77) 3.43 0.40 8,575(59)a 0.060 57,167(6.9)b

XII (78–88) 0.97 0.52 1,865 0.054 17,960
XIII (89–94) 2.10 1.60 1,313 0.10 21,000
Total 54.41 14,547 827,335
Crude venom 50.0 3.5 14,285 0.045 1,111,000

Fig. 1. Adsorption chromatography on hydroxylapatite. The
experimental conditions are given in section “Adsorption chroma-
tography on hydroxylapatite.”

Fig. 2. RP-HPLC of B. candidus venom fractions. (A) Fraction
T1 in Fig. 1; (B) fraction T2 in Fig. 1. The experimental condi-
tions are given in section “RP-HPLC.”
Vol. 134, No. 6, 2003
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BTxs (18), and F4A (12). T2 exhibits comparable lethal
toxicity of �2-BTx (18) and ceruleotoxins from B. fasciatus
venom (32).

Mice injected with variable doses of the toxins from B.
candidus venom showed no abnormal behavior within
the first 60 min after injection. After that time, slow
movement and inactivity were followed by paralysis, dys-
pnoea and death in a dose-independent manner. The
toxic symptoms observed in mice correspond to those
induced by �-BTxs, e.g., delayed onset of paralysis (15,
33).

Homogeneity and Molecular Weight—The homogene-
ity of the neurotoxins purified from B. candidus venom
was examined by SDS-PAGE in gradient gels (4–20%)
stained with CBB R-250 (Fig. 3A) or by the silver stain-
ing method (Fig. 3B). In the absence of mercaptoethanol,
the neurotoxins migrated as single bands to positions
corresponding to apparent molecular weights of about 25,
25.5, and 25 kDa (T1-1: Fig. 3A, lane 1; T1-2: Fig. 3A,
lane 2; and T2: Fig. 3B, lane 1), respectively. In the pres-
ence of mercaptoethanol, they migrated as two bands cor-
responding to apparent molecular weights of about 16.5
and 8 kDa (T1-1: Fig. 3A, lane 4), 15.5 and 8.5 kDa (T1-2:

Fig. 3A, lane 5), and 15.5 and 8 kDa (T2: Fig. 3B, lane 3),
respectively.

The apparent molecular weights of B. multicinctus �-
BTxs were estimated to be 21.2 kDa under non-reducing
conditions, and 13.5 (A-chain) plus 7 kDa (B-chain) in the
presence of mercaptoethanol (32), which are comparable
to the apparent molecular weights of the toxins we iso-
lated from B. candidus venom (the calibration curve for
molecular weight estimation is not shown) and the highly
toxic fraction (F6A) with PLA2 activity found by Tan et al.
(12), which had an apparent molecular weight of 21 kDa.

Amino Terminal Sequences—For the neurotoxins from
B. candidus venom, amino terminal sequences were
determined up to residue 14 for the A-chains and 15 for
the B-chains (Fig. 4). In this amino terminal part, the A-
chain of toxin T2 is identical to those of �1–3BTxs from B.
multicinctus venom, but T2 differs from the latter in its
B-chain. Likewise, toxins T1-1 and T1-2 are identical to
each other in the amino terminus of their A-chains but
differ in that of their B-chains. The available data sug-
gest a variable degree of similarity between the neurotox-
ins from B. candidus, and published A- and B-chains of �-
BTxs in B. multicinctus venom (16–22, 34).

Table 2. Summary of the purification of the three major neurotoxins from Thai B. candidus venom.

a, bFigures in parentheses are the purification factors and the percent recoveries calculated to crude venom, respec-
tively.

Step Protein (mg) Lethal toxicity PLA2 activity
LD50 (�g) Total LDs50 HLD (�g)

Crude venom 50 3.50 (2.50–4.19) 14,285 0.045
Resource™ S 3.43 0.40 (0.29–0.50) 8,575 0.06
Hydroxylapatite
T1 1.07 0.20 (0.15–0.29) 5,385 0.037
T2 0.92 0.77 (0.55–0.96) 1,195 0.19
RP-HPLC
T1-1 0.53 0.26 (0.18–0.31) (13.5)a 1,923 (13.5)b 0.045
T1-2 0.30 0.22 (0.15–0.28) (15.9)a 1,364 (9.5)b 0.12
T2 0.90 0.84 (0.60–1.01) (4.2)a 1,071 (7.5)b 0.42

Table 3. Comparison of the lethal toxicities of the purified neurotoxins with those of several neurotox-
ins hitherto isolated from Bungarus snake venoms.

aConverted from the LDs50 given in Table 2 and the previous paper (31) divided by 19, the mean body weight of
mice used in this study, to obtain LDs50 defined as �g per gram of mouse. b,cIntravenous and intraperitoneal,
respectively.

Venom LD50 (�g/g of mouse) Injection route Reference
B. candidus

T1-1 0.014 (0.0095–0.016)a i. v.b present study
T1-2 0.012 (0.0078–0.015)a i. v.b ibid.
T2 0.044 (0.032–0.053)a i. v.b ibid.
F6A 0.02 i. v.b 12
F4A 0.18 i. v.b 12

B. multicinctus
�1-BTx 0.019 (0.010–0.035) i. p.c 18
�2-BTx 0.028 (0.017–0.043) i. p.c 18
�3-BTx 0.066 (0.059–0.074) i. p.c 18
�4-BTx 0.072 (0.060–0.086) i. p.c 18
�5-BTx 0.130 (0.063–0.252) i. p.c 18

B. flaviceps 0.013 (0.010–0.017)a i. v.b 31
B. fasciatus

Ceruleotoxins 0.03–0.07 i. v.b 32
J. Biochem.
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CONCLUSION

One of the most prominent examples of natural engineer-
ing by through an accelerated rate of molecular evolution
of peptide sequences is that of snake venom gland PLA2,
including the group 1 PLA2 genes of elapid snakes (35,
36). The potential implications of a likely accelerated
mode of molecular evolution of �-BTx genes for krait
venom variability should therefore be considered when
the production of a specific antivenom is attempted.
Beta-BTxs are the most lethal toxins in Bungarus snake
venom, and variability in these toxins may warrant the
inclusion of snakes from several populations in the pro-
duction of regional antivenom (37). Warrell et al. (6)
found Taiwanese B. multicinctus antivenom to be ineffec-
tive in neutralizing Thai B. candidus venom in mouse-
protection tests. This could be due to possible differences
in the antigenic properties of B. candidus �-BTx like neu-
rotoxins. Studies in progress, including snakes from
other populations and species of Bungarus, hopefully will
resolve this problem and reveal the evolutionary rela-
tionships of the �-BTx family.

T. O. S. wishes to thank Dr. M. Takahashi, National Institute
of Infectious Diseases, Tokyo, Japan, for the helpful advice on
the bioassays. This work was supported in part by the Japan
Science and Technology Corporation, Ministry of Education,
Science and Technology of Japan.
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